skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McDonald, Brian C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. High-quality long-term observational records are essential to ensure appropriate and reliable trend detection of tropospheric ozone. However, the necessity of maintaining high sampling frequency, in addition to continuity, is often under-appreciated. A common assumption is that, so long as long-term records (e.g., a span of a few decades) are available, (1) the estimated trends are accurate and precise, and (2) the impact of small-scale variability (e.g., weather) can be eliminated. In this study, we show that the undercoverage bias (e.g., a type of sampling error resulting from statistical inference based on sparse or insufficient samples, such as once-per-week sampling frequency) can persistently reduce the trend accuracy of free tropospheric ozone, even if multi-decadal time series are considered. We use over 40 years of nighttime ozone observations measured at Mauna Loa, Hawaii (representative of the lower free troposphere), to make this demonstration and quantify the bias in monthly means and trends under different sampling strategies. We also show that short-term meteorological variability remains a cause of an inflated long-term trend uncertainty. To improve the trend precision and accuracy due to sampling bias, two remedies are proposed: (1) a data variability attribution of colocated meteorological influence can efficiently reduce estimation uncertainty and moderately reduce the impact of sparse sampling, and (2) an adaptive sampling strategy based on anomaly detection enables us to greatly reduce the sampling bias and produce more accurate trends using fewer samples compared to an intense regular sampling strategy. 
    more » « less
  2. Abstract. Tropical tropospheric ozone (TTO) is important for the global radiation budget because the longwave radiative effect of tropospheric ozone is higher in the tropics than midlatitudes. In recent decades the TTO burden has increased, partly due to the ongoing shift of ozone precursor emissions from midlatitude regions toward the Equator. In this study, we assess the distribution and trends of TTO using ozone profiles measured by high-quality in situ instruments from the IAGOS (In-Service Aircraft for a Global Observing System) commercial aircraft, the SHADOZ (Southern Hemisphere ADditional OZonesondes) network, and the ATom (Atmospheric Tomographic Mission) aircraft campaign, as well as six satellite records reporting tropical tropospheric column ozone (TTCO): TROPOspheric Monitoring Instrument (TROPOMI), Ozone Monitoring Instrument (OMI), OMI/Microwave Limb Sounder (MLS), Ozone Mapping Profiler Suite (OMPS)/Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2), Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI)/Global Ozone Monitoring Experiment 2 (GOME2). With greater availability of ozone profiles across the tropics we can now demonstrate that tropical India is among the most polluted regions (e.g., western Africa, tropical South Atlantic, Southeast Asia, Malaysia and Indonesia), with present-day 95th percentile ozone values reaching 80 nmol mol−1 in the lower free troposphere, comparable to midlatitude regions such as northeastern China and Korea. In situ observations show that TTO increased between 1994 and 2019, with the largest mid- and upper-tropospheric increases above India, Southeast Asia, and Malaysia and Indonesia (from 3.4 ± 0.8 to 6.8 ± 1.8 nmol mol−1 decade−1), reaching 11 ± 2.4 and 8 ± 0.8 nmol mol−1 decade−1 close to the surface (India and Malaysia–Indonesia, respectively). The longest continuous satellite records only span 2004–2019 but also show increasing ozone across the tropics when their full sampling is considered, with maximum trends over Southeast Asia of 2.31 ± 1.34 nmol mol−1 decade−1 (OMI) and 1.69 ± 0.89 nmol mol−1 decade−1 (OMI/MLS). In general, the sparsely sampled aircraft and ozonesonde records do not detect the 2004–2019 ozone increase, which could be due to the genuine trends on this timescale being masked by the additional uncertainty resulting from sparse sampling. The fact that the sign of the trends detected with satellite records changes above three IAGOS regions, when their sampling frequency is limited to that of the in situ observations, demonstrates the limitations of sparse in situ sampling strategies. This study exposes the need to maintain and develop high-frequency continuous observations (in situ and remote sensing) above the tropical Pacific Ocean, the Indian Ocean, western Africa, and South Asia in order to estimate accurate and precise ozone trends for these regions. In contrast, Southeast Asia and Malaysia–Indonesia are regions with such strong increases in ozone that the current in situ sampling frequency is adequate to detect the trends on a relatively short 15-year timescale. 
    more » « less
  3. Volatile chemical products (VCPs) and other non-combustion-related sourceshave become important for urban air quality, and bottom-up calculationsreport emissions of a variety of functionalized compounds that remainunderstudied and uncertain in emissions estimates. Using a new instrumentalconfiguration, we present online measurements of oxygenated organiccompounds in a US megacity over a 10 d wintertime sampling period, whenbiogenic sources and photochemistry were less active. Measurements wereconducted at a rooftop observatory in upper Manhattan, New York City, USAusing a Vocus chemical ionization time-of-flight mass spectrometer, withammonium (NH4+) as the reagent ion operating at 1 Hz. The range ofobservations spanned volatile, intermediate-volatility, and semi-volatileorganic compounds, with targeted analyses of ∼150 ions, whoselikely assignments included a range of functionalized compound classes suchas glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters,ethanolamines, and ketones that are found in various consumer, commercial,and industrial products. Their concentrations varied as a function of winddirection, with enhancements over the highly populated areas of the Bronx,Manhattan, and parts of New Jersey, and included abundant concentrations ofacetates, acrylates, ethylene glycol, and other commonly used oxygenatedcompounds. The results provide top-down constraints on wintertime emissionsof these oxygenated and functionalized compounds, with ratios to commonanthropogenic marker compounds and comparisons of their relative abundancesto two regionally resolved emissions inventories used in urban air qualitymodels. 
    more » « less
  4. null (Ed.)
    Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenicemissions of organic compounds, constitutes a substantial fraction of themass of submicron aerosol in populated areas around the world andcontributes to poor air quality and premature mortality. However, theprecursor sources of ASOA are poorly understood, and there are largeuncertainties in the health benefits that might accrue from reducinganthropogenic organic emissions. We show that the production of ASOA in 11urban areas on three continents is strongly correlated with the reactivityof specific anthropogenic volatile organic compounds. The differences inASOA production across different cities can be explained by differences inthe emissions of aromatics and intermediate- and semi-volatile organiccompounds, indicating the importance of controlling these ASOA precursors.With an improved model representation of ASOA driven by the observations,we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which isover an order of magnitude higher than prior studies. A sensitivity casewith a more recently proposed model for attributing mortality to PM2.5(the Global Exposure Mortality Model) results in up to 900 000 deaths. Alimitation of this study is the extrapolation from cities with detailedstudies and regions where detailed emission inventories are available toother regions where uncertainties in emissions are larger. In addition tofurther development of institutional air quality management infrastructure,comprehensive air quality campaigns in the countries in South and CentralAmerica, Africa, South Asia, and the Middle East are needed for furtherprogress in this area. 
    more » « less
  5. Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts. 
    more » « less